Problems in Quantum Field Theory 3: Interacting quantum fields

2015 Belgian-Dutch-German
Graduate School of Particle Physics

V. Pelgrims

NOTE: Priority to exercises marked by a "*" will be given during the tutorials.

1. Derive the formula for the cross section $d \sigma$ from the S-matrix.
2. * Prove that the sum over polarization gives

$$
\sum_{s} u^{s}(p) \bar{u}^{s}(p)=\gamma \cdot p+m, \quad \sum_{s} v^{s}(p) \bar{v}^{s}(p)=\gamma \cdot p-m
$$

3. * Check that $\gamma_{0}^{+}=\gamma_{0}$ and that $\gamma_{0} \gamma_{\mu} \gamma_{0}=\gamma_{\mu}^{+}$.
4. ${ }^{\star}$ Compute $\operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu} \gamma^{\alpha} \gamma^{\beta}\right)$ and $\gamma_{\mu} \gamma^{\alpha} \gamma^{\beta} \gamma^{\mu}$.
5. * What are the Feynman rules for the Lagrangians of exercise 2.6?
