Problems in Quantum Field Theory 3: Interacting quantum fields

2015 Belgian-Dutch-German Graduate School of Particle Physics

V. Pelgrims

NOTE: Priority to exercises marked by a "*" will be given during the tutorials.

- 1. Derive the formula for the cross section $d\sigma$ from the S-matrix.
- 2. \star Prove that the sum over polarization gives

$$\sum_{s} u^{s}(p)\bar{u}^{s}(p) = \gamma \cdot p + m, \qquad \sum_{s} v^{s}(p)\bar{v}^{s}(p) = \gamma \cdot p - m.$$

- 3. * Check that $\gamma_0^+ = \gamma_0$ and that $\gamma_0 \gamma_\mu \gamma_0 = \gamma_\mu^+$.
- 4. * Compute $Tr(\gamma^{\mu}\gamma^{\nu}\gamma^{\alpha}\gamma^{\beta})$ and $\gamma_{\mu}\gamma^{\alpha}\gamma^{\beta}\gamma^{\mu}$.
- 5. * What are the Feynman rules for the Lagrangians of exercise 2.6?