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Abstract

We consider several classes of analytic parametrisations of hadronic scattering
amplitudes, and compare their predictions to all available forward data (pp, Pp, 7p,
Kp, vp, v7v, Lp). Although these parametrisations are very close for /s > 9 GeV, it
turns out that they differ markedly at low energy, where a universal pomeron term
~ In? s enables one to extend the fit down to 1/s=4 GeV.

1 Introduction

The singularity structure of forward hadronic amplitudes is of great importance, as it
controls the extrapolation of cross sections to high energies and to small x. Its study lies
mostly outside the realm of perturbative QCD, except perhaps at small x and high @2,

where there is some overlap, hence the hope to obtain some QCD-based understanding of
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these amplitudes in the near future. However, there are several tools available to treat this
non perturbative domain. These are based on the theory of the analytic S matrix.

The first is to demand that hadronic amplitudes are analytic functions in the complex
angular momentum J. The singularities in the complex J plane then determine the form
of the asymptotic amplitudes in s at finite £. This means that one can then relate, through
analyticity and crossing symmetry, the real part of the amplitude to its imaginary part.
In other words, the exact knowledge of the cross section for all s is equivalent to that of
the p parameter. In practice, there are several analytic forms which are very close for the
total cross sections in a finite interval in s, but which differ markedly for the real part.
Hence in this paper, we shall consider the experimental constraints on both the real and
the imaginary parts. Furthermore, ¢t-channel unitarity leads to the conclusion that these
singularities should be universal, in the sense that they do not depend on the scattering

hadrons?

. This leads to factorizing amplitudes?, for which the residue depends on the
colliding hadrons, but the singularity is independent of them.

The second constraint is due to the unitarity of partial waves and polynomial bound-
edness of the absorptive part within the Lehmann ellipse. This leads to the celebrated
Froissart-Martin bound [1]|, which indicates that at asymptotic energies, total cross sec-
tions cannot increase faster than In’s (note that this behaviour was first proposed by
W. Heisenberg in 1952 |2]). Although this is a priori a strong constraint, it turns out
that the coefficient of the In?s can be large: all we know is that it is bounded by
Ty ~ 60 mb (Lukaszuk-Martin [3]), hence parametrisations which asymptotically violate
th7re Froissart bound, such as rising simple poles, may survive to present energies without
violating unitarity.

Finally, the last ingredient is Regge theory. The meson trajectories can indeed be seen
in a Chew-Frautschi plot, and hence their intercepts can in principle be measured directly.
This leads to the conclusion that the intercepts of these trajectories are of order 0.5, that
the C' = 41 and C' = —1 trajectories are approximately degenerate, and that they seem
to be linear. We shall assume in the following that their contribution to the total cross
section can be parametrized by Y *s*+~! and Y ~s% ~L.

These constraints, unfortunately, are far from providing a unique answer. As an exam-
ple, the derivative relations [4] can be conceived as a source of an infinite class of analytic
parametrisations satisfying the above theoretical criteria. However, it is possible to re-

duce this class of models to a few exemplar cases, for which the cross section, in the limit

3The photon is special in this context, and may have further singularities.
4Note however that factorization can be proven only for simple poles.



s — 00, behaves as a constant, as Ins or as In?s. Hence in practice, only a handful of
parametrisations have been considered and constrained. These represent variations on the
parametrisation proposed in |5, 6], which will be symbolically referred to as (Regge +
Regge + Pomeranchuk + Heisenberg) type parametrisations — RRPH. Here both R stand
for the leading reggeon terms, P stands for a constant contribution to the total cross sec-
tion at asymptotic energies (the classical Pomeranchuk asymptotic limit |7]) and H stands
for the asymptotically infinitely rising with energy contribution, which we take as Ins or
In? s. Because of its popularity and simplicity, we shall also consider case E, i.e. the case
of a simple pole s*~'with «, > 1.

Some of us (COMPAS) are maintaining a complete set of data for all hadronic processes,
so that we are in a position to fully evaluate the various possibilities. We are using a
slightly improved dataset from the one of [8]: some preliminary data on the p parameter
have been removed, and new published data from SELEX (7~ N and ¥~ N at 600 GeV/c)
[9] and OPAL (v7) [10] were added. We did not use the new recent data from L3 [11] on
vy — hadrons total hadronic cross sections because unfortunately these very interesting
data are still not published yet. Definitely these data, when published, will be used in the
next iteration of the cross assessments.

In the past few years, and mainly because of the existence of this dataset, several

advances have been made:

1. The systematic and simultaneous study, via analytic representations, of the forward
data, both oy, and p, for pp, Pp, 7¥p, K*p, vp and v scattering. Such a program
was initiated by the COMPAS group|12|, and pursued in refs. [8, 13];

2. The general recognition that a Regge pole model [13] has a much wider range of
applicability than previously expected while it was also recognized that the exchange-

degenerate reggeons were not preferred by the forward scattering data [14];

3. The rediscovery [15] of former ideas [16, 17] such as a 2-component soft pomeron,
with one component taking quark counting into account and the other being universal
and rising with energy, or of full lifting of degeneracy for lower meson trajectories
[18].

4. The impossibility to distinguish between wide ranges of analytic parametrisations
when using data at /s > 9 GeV [§].



We want to examine in detail those conclusions, and see to which extents the mod-
els considered in [8] can be extended to lower energy, i.e. above the resonance region
~ 3 GeV. A new quantitative procedure of ranking models by the quality of the fit to
the current experimental data is suggested and used. In section 2, we shall concentrate on
total cross sections, and propose this new ranking scheme. In section 3, we shall extend our
analysis to all forward data, and see that this changes the picture considerably. In section
4, we shall comment on some models proposed recently, and which were not considered
directly in the previous analysis. In section 5, we shall comment on cosmic ray data. To
conclude, we shall present the possible alternatives, and analyse their respective drawbacks

and advantages.

2 Fits to lower-energy total cross sections

As it will turn out, the consideration of p(s) data results in a very constrained fit, but
some of the sub-samples of data are poorly fitted to. This might be blamed on the quality
and systematic errors on the forward-scattering data for p(s). Hence the first and safest
constraint must be the reproduction of oy,(s) data only. In this case, the number of
possible models that achieve a good x? per degree of freedom (x?/dof) is quite large. To
describe the different possibilities we will need some notations to classify variants, and we
shall use the following:

O.G:Fb —

®» | =

(R+ab(8) + Rfab(s) +P% 4+ Hab(s)) , (1)

where:

R (s) = Y% - (s/s1)®, with s; = 1 GeV?,

R™(s) = Y3 - (s/51)*,

P% = sC is the Pomeron simple pole at J = 1

H(s) stands for one of the three following possibilities :

. a supplementary simple pole at J = «,,, with o, > 1:

E% = X%(s/s,)%;



. a double pole at J = 1:

Loy = s(Bap In(s/s1) + Aw);

. a triple pole at J = 1:

L24 = s(Bap(In*(s/50) + Agp)-

In the general case, the constants Cy, and A,, are independent and they are associated
with a different behaviour in ¢. But at ¢ = 0, as is the case for our fits, they can’t be
distinguished. They mix and we are left, when we consider logarithms, with just linear or
quadratic forms in In s:

Py + Loy = sByy In(s/s1) + $Z4

and
Pab + L2ab = SBab 1112(8/50) + SZab,

where Zab = Cab + Aab-
In the following we will restrict ourselves to fits where s; is process-independent. We

have also considered fits with the ratio Z,,/Bg, kept process-independent
P+ Loy = sAap(Bln(s/s1) + A),

with A\,, =1, as well as fits to the form RRE, without any P term.
We fit to 3 pairs of reactions for particle and antiparticle: pp and pp, 7¥p and K*p,
one reaction with particles ¥~ p and two reactions coupled only to C=+1 trajectories: vp

and y7.

The counting of parameters then goes as follows:
e one intercept, and 6 residues (i.e. 7 parameters) for each C' = +1 reggeon;
e one intercept and 4 residues (i.e. 5 parameters) for each C' = —1 reggeon.

Concerning the pomeron terms, unless otherwise indicated by the subscript nf, we impose
factorisation of the v cross sections: H,, = dH.,, = 6°H,, and/or P,, = 6 P,, = §*P,, with

the same value of §. This leads to:



e 1 parameter ¢;
e 4 parameters for the constant term Z,;
e 4 parameters B,, + one intercept for E or one scale factor sy for L2;

When considering several singularities for the pomeron term, we usually treat them as
independent. However, when we implement factorisation, we take the same value of ¢ for

all singularities. This leads to:
e 9 parameters for PL;
e 10 parameters for PL2 or PE.

Furthermore, we have considered several possibilities to constrain the parameters. The
following notations are attached as either superscript or subscript to the model variants in

each case:

d means degenerate leading reggeon trajectories a; = . This lowers the number of
parameters by 2 units, as one has only one intercept, and one coupling for the X7 p

cross section;

uw means universal for the rising term (independent of projectile hadron). This reduces
the number of parameters by 3 units. Assuming again the same factorisation for all

pomeron singularities, we get 6 parameters for PL,, and 7 for PL2,;

nf means that we have not imposed factorization for the residues of H(s) in the case
of the vy and 7p cross sections. This adds one parameter to the fit in the case of a

single pomeron singularity, and two or three for multiple singularities.

gc means that approximate quark counting rules of the additive quark model [19] are
imposed on the residues. This means that the u, d and s couplings can be deduced
from pp, mp and Kp scattering, and used to predict ¥p. Hence this lowers the number
of parameters by 1 unit per singularity to which this rule is applied. It should be
noted that analogous counting rules also follow from the so-called gluon dominance
model [20] for the dominant asymptotic contribution to the cross sections. These

counting rules were confirmed to some extent recently in the global fits of [8].

Finally, we have sometimes assumed that the ratio of the residues of different singularities

is process-independent. This is noted by including these singularities in braces {}. We have
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also considered the possibility that factorisation works for the lower C' = +1 trajectories,
with the same § as for the pomeron. We indicate this by putting the singularities in
brackets ||.

All reasonable combinations of these constraints give more than 256 different variants
of the parametrisations. We shall consider here only seven representative models that give
a x?/dof smaller than 1.5 for all considered energies. Further results may be found in
Appendices 1 and 2.

Table 1 gives the results for the minimum center-of-mass energy considered in the fit
V/$min = 3 GeV. Note that because of the large number of points, slight deviations of the
x%/dof from 1 result in a very low confidence level. Hence we have shown the area of

applicability of the models as the energy values for which x%/dof < 1.0.

V/Smin in GeV (number of points)
Model code (Npqr) | 3 (725) | 4 (580) | 5 (506) | 6 (433) | 7 (368) | 8 (330) | 9 (284) | 10 (229)
RREnf(lg) 1.38 1.15 0.91 0.87 0.89 0.90 0.93 0.91
RRE®(17) 1.39 1.17 0.93 0.89 0.90 0.91 0.93 0.92
RRLnf(lg) 1.31 0.96 0.82 0.80 0.85 0.85 0.86 0.85
RRPL(21) 1.33 0.98 0.85 0.83 0.87 0.88 0.84 0.74
(RR)? P, 12(20) | 124 | 099 | 082 | 079 | 083 | 084 | 083 | 0.73
RRP,; L2,(21) 1.26 0.97 0.81 0.79 0.82 0.83 0.82 0.75
(RR)? P L2,(17) | 1.28 1.0 | 082 | 081 | 083 | 083 | 083 | 0.76

Table 1: the x2/dof of best models fitting all cross section data down to 4 GeV.
Numbers in bold represent the area of applicability of each model. In parenthesis, we

indicate the number of parameters (Npq,) for each model.

As can be seen, the data are compatible with many possibilities, and one cannot decide at
this level what the nature of the pomeron is, and whether any of the regularities considered
above is realised. Note that 9 (resp. 23) models shown in Appendix 1 fit the data well (i.e.
with a x*/dof < 1) for \/Spin = 4 GeV (resp. 5 GeV). Hence it seems that sub-leading
trajectories and other non-asymptotic characteristics do not manifest themselves yet. One
can see that the logarithmic increases in general fit better than simple powers, even at large
energy /s ~ 10 GeV, but that the difference in x?/dof is not large enough to reach any
firm conclusion. Quark counting can be implemented for each possible rising term, but on

the other hand one can choose a universal (beam-independent) rise as well. It is interesting



that a reasonable degeneracy of the leading reggeon trajectories can be implemented only
in models which have a In? s pomeron. The latter degeneracy is in fact expected to hold
in global fits to the forward scattering data of all hadronic processes, when one includes
Kp scattering, which has an exotic s-channel in view of duality.

We can choose two approaches to distinguish further amongst the above models. We
can add more data, which we shall do in the next section, but we want first to examine in
detail the quality of the fits. Indeed, despite the fact that these models do fit the data well
globally, several other characteristics may be considered, and demanded on the results. We
shall present here a set of indicators which quantify several aspects of the fits, and which

will enable us to assess better the quality of the models.

2.1 Indicators measuring the quality of the fits.

The best known such quantity is certainly the x?/dof, or more precisely the confidence
level (CL).

However, because Regge theory does not apply in the resonance region, no model is
expected to reproduce the data down to the lowest measured energy. The cutoff we have
given in Table 1 is ad hoc: we know the fits must fail at some point, but we cannot predict
where. Hence another indicator will be the range of energy of the data that the model can
reproduce with a x?/dof < 1.0.

Furthermore, the quality of the data varies depending on which quantity or which
process one considers. In principle, one could introduce some kind of data selection, but
that would undoubtedly bias the fits one way or the other. The other option is to assign a
weight to each process or quantity, which takes into account the quality of the data. Given
that this will be done to compare models together, we are certainly entitled to choose the

weights as determined by the best fit. Hence we introduce

1
w; =min | 1, ————
’ ( X3/ nop)
where j = 1,... 9 refers to the process, and we define the renormalised x% as:
X = Z w;X;
J

Finally, if a fit is physical in a given range, then its parameters must be stable if

one considers part of the range: different determinations based on a sub-sample must be
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compatible. Hence another indicator will deal with the stability of the fit.
We have developed a series of statistical quantities that enable us to measure the above
features of the fits. All these indicators are constructed so that the higher their value the

better is the quality of the data description.

(1) The Applicability Indicator: It characterizes the range of energy which can be
fitted by the model. This range can in principle be process-dependent, but we shall
not consider such a case here. The range of applicability is, by definition, the range
of data where fit has a confidence level bigger CL > 50%. One of the simplest variant

is as follows:

; 1
Al = wy (BB, AN = DA (2)
Sets ]

J J

where j is the multi-index denoting the pair (data subset, observable); Ny is the

number of such subsets, EJM Mg s the highest value of the energy in the area of

E]]_\l,low

energy in the area of applicability of the model M in the data subset j, and w; is

applicability of the model M in the data subset j; is the lowest value of the
the weight determined from the best fit in the same interval (hence w; will depend
itself on EJM gk and EJM o) "In our case the applicability indicator takes the form:

+ AJI\(/["‘;D,U + A%—p,a—i_

9 PP, P, Ttp,o TP,

AM = L (AN AN AN+ AN

+ AY AN AN Y. (3)
Inspection of the fit results shows that for some modification of the parametrisations
we obtain rather good fits starting from FE,,;, = 4 or 5 GeV but with negative
contributions to the total cross sections from terms corresponding to the exchange
of the pomeron-like objects at low energy part of the area of applicability as defined
above. This is unphysical and we are forced to add an additional constraint to the
area of applicability: We exclude from it the low energy part where at least in one
collision there is a negative contribution from the total sum of the pomeron-like
(asymptotically rising) terms. The situation is illustrated in Tables A1.3 and A2.3
of the appendices where excluded intervals are marked by minus as upper case index
at the x%/dof value. It is interesting that some models turned out to have an empty

area of applicability once this criterion was imposed.



(2) Confidence-1 Indicator.
cM =CL%

where the CL refers to the whole area of applicability of the model M.
(3) Confidence-2 Indicator.

cH =CL%

where the CL refers to the intersection of the areas of applicability of all models
qualified for the comparison (we choose here /s > 5 GeV for the fits without p
parameter (see Table A1.3) and /s > 9 GeV for the fits with p data (see Table
A2.3).

(4) Uniformity Indicator. This indicator measures the variation of the x*/nop from bin

to bin for some data binning motivated by physics:

v |1 «1ae amPl
U - {Nsets ;Z |ﬁ§Vt - fv%jp] } ’ (4)

nop

where ¢ denotes the total area of applicability, j is a multi-index denoting the pair
(data set, observable). In our case we use the calculation of the x%/nop for each

collision separately, i.e. the sum runs as in the case of the applicability indicator.

(5) Rigidity Indicator. As the measure of the rigidity of the model we propose to use

the indicator

b1+ NM

The most rigid model has the highest value of the number of data points per ad-
justable parameter. The exact theory 7T (with no adjustable parameters) has the
rigidity value R" = Nj'(A) — the total number of data points in the area of applica-
bility. This indicator takes into account the set of known regularities in the data that
were incorporated into the model to reduce the number of adjustable parameters and

to increase the statistical reliability of the parameter estimates.
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(6) Reliability Indicator.

2

RY =
2 Npar(Npar -

R

Z ©(90.0 - Cf) (6)
i>j=1
where Cg — is the correlation matrix element in % calculated in the fit at the low edge

of the applicability area. This indicator characterizes the goodness of the parameter

error matrix. For the diagonal correlator this indicator is maximal and equals 1.

(7) Stability-1 Indicator.

-1
S{VI — {N N Z Z Pstep Wt Wstep)i—jl(Pt _ Pstep)j} (7)
steps*Vpar steps ij

where: P! - vector of parameters values obtained from the model fit to the whole
area of applicability;

PsteP _ vector of parameters values obtained from the model fit to the reduced data
set on the step, in our case step means shift in the low edge of the fit interval to the
right by 1 GeV, if there are no steps then SM = 0 by definition;

Wt and W**P are the error matrix estimates obtained from the fits to the total and

to the reduced on the step s data samples from the domain of applicability.

We give the results of these comparisons in Table 2 and Appendix 1, Table A1.2.

The development of these indicators is needed to allow us to verify automatically the
rough features of a large quantity of models (see Appendices 1 and 2). Hence, as a first
“numerical trigger” to indicate the best fits, we have adopted a simple ranking scheme,

29

which complements the usual “best x*” criterion. As all the features measured by the

indicators are highly desirable, we adopt for the rank, in a given ensemble of models, a

definition that gives equal weight to all indicators
I = (A", CF, 3", U™, R, Ry, ST") (8)

where the index m describes the model, index k& describes the indicator type.

Having calculated all components of the indicators, it is easy, for a given indicator, to
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assign a number of points to a given model M:

pM =3 (2@(11?/1_11?1)4‘51,34,1,;“); (9)
m#M

The rank of models is then obtained via the total amount of points of the model :

PY =3P =33 (20 — L") + oy gp) (10)
k k m#M

In this approach, the best models are the models with the highest P™ value. In the
Tables 2 and 5, and in the appendices, we present the ranking of 33 recently discussed
parametrisations: 28 of them had a sufficiently high CL for comparison on the o;,-data

and 21 of them had a sufficiently high CL for comparison on the o4, (s)- and p(s)-data.

| Model Code | a o | o) [ uM |RM| RY | $M | rank PV |
simple pole:
RR E,;(19) 2.6 | 91. | 8. | 51. | 25. | 0.88 | 0.18 | 208
RR E%(17) 2.6 | 86. | 79. | 88. | 28. |0.94| 0.15 252
simple-+double pole
RRL,,/(19) 2.6 | 76. | 95. | 36. | 29. | 0.79 | 0.16 | 212
RRPL(21) 22 | 65. | 99.7 | 59. | 26. | 0.81 | 0.082 162

simple+triple pole
(RR)? P,,;L2(20) || 2.5 | 59. |99.9 | 38. | 28. | 0.88 | 0.098 120
RRP,,;L2,(21) 2.5 | 68. | 99.7 | 34. | 26. | 0.91 | 0.008 182
(RR)? PL2,(17) 2.6 | 99.8 | 99.7 | 185. | 28. | 0.88 | 0.16 296

Table 2: model quality indicators for the models kept in Table 1. Bold-faced charac-

ters indicate the best model for a given indicator.

On the other hand, it is also possible to use these indicators directly, as characterizing
each model. For instance, if we analyse the first two lines of Table 2, we directly see from
column 1 that simple-pole models apply in as big an energy band as the other models.
The second and third columns tell us however that the best CL are achieved by triple-pole
models with the double-pole models closely behind. The fourth column tells us that while
most models do not reproduce all data equally well (see also Table 4), the most uniform
model is (RR)4PL2,(17). The fifth column indicates that the models apply in similar

12



energy ranges and have similar numbers of parameters. Similarly, we see from the sixth
column that the reliability of the error matrices is similar. However, the seventh column
clearly indicates that the parameters of RRPL(21), (RR)? P,,;L2(20) and RRP,;L2,(21)
are very sensitive to the minimum energy considered, and hence that these models are not

stable w.r.t. that minimum energy.

3 Fits to all lower-energy forward data

Given that the fits to total cross sections are unable to decide on the singularity structure of
the amplitudes, one can turn to other data, namely the real part of the forward amplitude.
It can be obtained through analyticity and s — crossing symmetry from the form of the
cross section (see Appendix 3). If one keeps the same minimum energy, then a joint fit to
both cross sections and real parts reaches a very different conclusion. We show in Table 3
the models which achieve a x?/dof less than 1 for /s > 5 GeV.

V/3min in GeV and number of data points
| Model code (Npor) | 3 (904) | 4 (742) | 5 (648) | 6 (569) | 7 (498) | 8 (453) | 9 (397) | 10 (329)
| RRE, ;(19) | 18 | 14 | 11 | 11 | 11 | 11 | 10 [ 10
RRL,/(19) 1.6 1.1 097 | 097 | 1.0 | 096 | 094 | 0.93
RRPL(21) 1.6 1.1 098 | 098 | 099 | 094 | 093 | o0.91
(RR)? P, L2(20) | 1.9 1.2 1.0 1.0 | 099 | 094 | 093 | o092
RRP,,;1.2,(21) 1.8 1.1 097 | 097 | 097 | 092 | 093 | 0.92
(RR)? PL2,(17) 2.0 1.3 1.0 1.0 | 098 | 094 | 093 | 093

Table 3: representative models fitting all cross section and p data down to 5 GeV.

Numbers in bold represent the area of applicability of each model.

The clearest outcome of this is that all models with a simple pole pomeron are then
eliminated. The best x?/dof for these is 1.12 for RRE, ;. Although these values may not
seem too problematic, one has to realise that we are fitting to a large number of data points
(648 for \/s > 5 GeV), hence this model is rejected at the 98% C.L.

3.1 Evaluation of the dataset

However, one needs to check where these values of x?/dof come from. Hence we can look

in detail at the various processes and quantities fitted to. We show in Table 4 the results
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of 3 representative models. The first two are kept in Table 3, whereas we came to the
conclusion that the third is excluded. We see that the main difference comes from the p
parameter data, which are much better fitted by the first two models than by the third.
However, it is rather difficult to reach a definite conclusion, given the fact that these data

are not perfectly fitted by any model: in particular, the 7p and pp data.

Reaction | Number of | RRP,;L2, | RRPL | RRE,
data points
Opp 112 0.87 0.87 0.89
O3 59 1.2 1.0 1.1
Ortp 50 0.78 0.78 1.4
Or—p 106 0.89 0.90 0.88
Ok+p 40 0.71 0.72 1.0
Okp 63 0.61 0.62 0.72
Osp 9 0.38 0.38 0.39
Orp 38 0.62 0.75 0.59
Oy 30 0.7 0.95 0.55
Dop 74 1.8 1.6 1.8
. 11 0.55 0.47 | 0.60
Prtp 8 15 1.6 2.7
Prp 30 1.2 1.3 2.1
PK+p 10 1.0 1.1 0.83
PK-p 8 0.96 1.2 1.8

Table 4: The values of the x? per data point (x2/nop) for each process in three
representative models, for /s > 5 GeV.

3.2 Best models for all forward data

We can generalize the previous quality indicators to the full set of forward data. We give
in Table 5 and in Appendix 2 the quality indicators for representative models fitting both

total cross sections and p parameters. We have introduced a second stability indicator, Ss,
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which is analogous to the stability-1 indicator

-1
SM — {ZNLM Z(Pt — P ([t 4 o)L (pt Pt(nop))j} ' (11)
par ij

In this case, we fit the whole set of the model parameters to the full area of applicability
(superscript t) and the same set of parameters but to the data sample without p-data
(superscript t(no p)). This indicator characterizes the reproducibility of the parameters
values when fitting to the reduced data sample and reduced number of observables but with
the same number of adjustable parameters. This indicator might be strongly correlated
with the uniformity indicators. We add S%* to the list of indicators entering I}* in Eq. (8)
when we determine the best models for the full set of data, and run the sums for all
indicators for 15 sets of data instead of 9, as we now include the real parts of pp, pp, K*p
and 7¥p.

As we can see, the two parametrisations based on double poles and on triple poles
achieve comparable levels of quality, and one cannot decide which is the best based on
these indicators. In the conclusion, we shall explain which physics arguments lead us to

prefer the triple pole alternative.

‘ Model Code H AM ‘ cM ‘ cy ‘ uM ‘ RM ‘ RY ‘ sM ‘ SM ‘ rank PM
RRP,,rL2,(21) 2.2 | 68. | 8. | 23. | 29. | 0.90 | 0.22 | 0.10 222
(RR)? P,,;L2(20) | 2.2 | 50. | 82. | 18. | 31. | 0.90 | 0.27 [ 0.41 | 178
(RR)¢ PL2,(17) 2.0 | 50. | 83. | 16. | 32. | 0.88 | 0.30 | 0.67 174

RRL, ;(19) 18 | 73. | 81. | 17. | 32. | 0.78 | 0.29 | 1.3 | 222
RRPL(21) 1.6 | 67. | 82. | 26. | 29. | 0.75 | 0.21 | 1.1 173

Table 5: Quality indicators in five representative models fitting well all forward data.

4 Other models

We have tried to impose the Johnson-Treiman-Freund [21, 22] relation for the cross section
differences Ac(N) = 5A0(7), Ao(K) = 2A0(w), and the models corresponding to this are
marked by an index ¢ in Appendices 1 and 2. These rules, while not being totally excluded,
never lead to an improvement of the fit, and in some case degrade the fit considerably. It
is interesting to note however that they produce the two parametrisations with fewest
parameters acceptable above 8 GeV.
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We also considered alternative models which have been proposed or rediscovered re-
cently |23, 24|, and confront them with our full dataset. From Table 6, one sees clearly that
the parameter values and possibly the model themselves have practically zero confidence
levels at all starting collision energies /S, from 3 to 10 GeV.

/Smin 10 GeV
Model code (Nper) | 3 4 5 6 7 8 9

FFP-97(23] 101 | 16.26 | 3.28 | 2.3 | 2.3 | 2.39 | 2.34
Lipkin TCP|24] 4.63 | 3.14 | 2.54 | 2.61 | 2.86 | 3.07 | 3.48

Table 6: x2/dof of two excluded parametrisations.

5 Other data

As in the previous studies [8| of fitting the data sample [12], we have also excluded all
cosmic data points |25, [26] in this study of the analytic amplitude models. There are two
reasons for that: the original numerical Akeno (Agasa) data are not available and there
are the contradictory statements [27, 28, 29, 30, 31]|concerning the cross section values of
the cosmic data points from both Fly’s Eye and Akeno(Agasa).

Having selected the models which reproduce best the accelerator data, we are now able
to clarify how well they meet the three cosmic rays data samples. For each cosmic data
samples, i.e. those of the original experiments [25], [26]; those corrected by Nikolaev et al.
[28], [29]; and those corrected by Block et al. [31] (see also [27]), we calculate the x?/nop
for each model with parameters fixed at the beginning of their areas of applicability defined
by accelerator data. The results are shown in Table 7.

It turns out that the original cosmic experimental data are best fitted by our high-rank
parametrisations. The data sample corrected by Block et al. data is also fitted well, as
the data points were lowered within the limits of the uncertainties reported in the original

experimental publications.
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Experiment | Nikolaev et al. | Block et al.

Model Code X2 | x?/nop X2 | x*/nop | x? | x*/nop
RRPnfLQU(Ql) 1.62 0.23 14.31 2.04 3.30 0.47
(RR)%P,,;L2,(19) | 1.73 | 0.25 |13.96| 1.99 |3.45| 0.49
RRLnf(lg) 2.52 0.36 24.25 3.46 2.19 0.31
RRPL(21) 2.93 0.42 25.48 3.64 2.34 0.33

Table 7: the x? of the cosmic ray data, corrected in several different ways [27, 28, 29,

30, 31], for each of the best parametrisations fitting the accelerator data.

6 Analysis and conclusion

The above analysis shows that there are several scenarios which can account for the ob-
served forward hadronic scattering amplitudes. These scenarios all have their merits, and
some of them have problems. Although only preliminary conclusions can be drawn based

on these data, we can outline these various possibilities, and present their consequences.

6.1 Possible parametrisations

The three possible scenarios consist of simple, double or triple poles in the complex J plane
accounting for the rising part of the cross section. We give in Table 8 the parameters of
each model. All have the same parametrisation for the exchange of the leading meson
trajectories, but the values of the various intercepts and residues are very different. The
C = —1 part of the amplitude is rather stable, but the C = +1 part turns out to be very
model-dependent as it mixes with the pomeron contribution, with in some cases much
larger values of the intercept o than those normally expected from duality-breaking in
strong interaction physics. Because of this, the lower energy data cannot fix the nature
of the pomeron as the details of the a/f contribution are not known. The data for ¥p
scattering sometimes lead to a negative a/ f contribution, which is incompatible with Regge
theory, and to an extrapolation at high energy that overshoots the pp and pp cross sections.
However, the size of the error bars clearly shows that acceptable values are allowed and

that these data do not introduce much of a constraint on the fit.
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6.1.1 Simple poles

The first scenario is the simplest conceptually: the pomeron would correspond to some
glueball trajectory, and have properties similar to those of the mesons. This model has the
advantage that it must then factorize, and hence it can be generalized easily and successfully
to many other processes. The residues of the pomeron can also be made totally compatible
with quark counting.

It provides good fits to all data for /s > 9 GeV, acceptable fits for the total cross
sections for /s > 5 GeV, but fails to reproduce both the total cross section and the
p parameter for /s > 5 GeV. One can of course take the attitude that the data have
problems, and not include them, or that there are sub-dominant effects at these energies,
and that it is natural for the model not to be extended so low. On the other side of
the energy spectrum, one expects to have unitarity corrections at very large energies. In
practice, however, this model differs by a few percents from the RRPL2, parametrisation,
mentioned below, up to LHC energies, and hence unitarizing corrections do not need to be
introduced yet.

This model shows a non-degeneracy of the dominant meson trajectories, with some-
what larger a/f intercept a; and somewhat smaller p/w intercept s, which may well be
compatible with the known trajectories.

Furthermore, it is well known that one needs to introduce a new simple pole to account
for DIS data in such a scenario. Such a new rising term seems to be totally absent from the
soft data, which seems rather odd, but cannot be ruled out. We give in Table 8, column

3, the best parameters for this model in the fit to total cross sections.

6.1.2 Double poles

One can also assume that the amplitude contains a double pole at J = 1. This then provides
for a rising In s term in the total cross section, as well as a constant term. This kind of
parametrisation (shown in Table 8, column 2) gives excellent fits to the soft data, and can
be extended to deep-inelastic scattering [18] without any further singularity. Furthermore,
it never violates unitarity, and hence it can be extended to arbitrarily large energies.
However, it suffers from several drawbacks. First of all, the pomeron term becomes
negative below 9.5 GeV, and hence processes which couple only to the pomeron by Zweig’s
rule would have negative cross sections if one uses factorization. However, the latter is

proven only for simple poles, and hence this problem is not a sufficient reason to reject
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these parametrisations. Similarly, the split of the leading meson trajectories is quite big,
somewhat bigger than what a normal duality-breaking estimate or a linear extrapolation
of the known resonances would allow [32]. As a result, the pomeron in this class of variants
is inevitably compromising with the crossing even reggeon in the Regge region in the sense
that it must effectively counter-balance the excessive contribution of the reggeon. Thus the
pomeron term in this case may be representing more than the asymptotic behaviour of the
amplitude. One may therefore say that a pomeron associated with reasonably degenerate
reggeons may be more natural from the point of view of duality. But again, one cannot
prove linearity of the trajectories, hence the model may survive. Finally, it seems that
quark counting is respected to a very good approximation by the coefficients of the log and
of the constant term. This only reinforces the problem of negativity as it is very difficult

to conceive a non factorizing pole which would nevertheless respect quark counting.

6.1.3 Triple poles

Finally, the best fits are given by models that contain a triple pole at J = 1, which then
produce In? s, In s and constant terms in the total cross section. The best parameter values
for this model are given in Table 8, column 1. The most interesting properties may be that
the constant term respect quark counting to a good approximation, whereas the In%s term
can be taken as universal, i.e. independent of the process, as advocated in [16, 17| and
rediscovered in [15] (see also [33]). The universality of the rising term is expected in the case
of the eikonal unitarisation of a bare pomeron with the intercept larger than 1, because the
coefficient of the rising term turns out to depend only on the intercept and slope of the bare
pomeron [34]. But for the J-plane singularities of double and triple pole types considered
in this paper, the structure of such a singularity [35] and the origin of its universality is
less obvious. Nevertheless, such a singularity at J = 1 may in fact have a theoretical
explanation: recently, Bartels, Lipatov and Vacca [36] discovered that there are, in fact,
two types of Pomeron in LLA : besides the well-known BFKL pomeron associated with
2-gluon exchanges, and with an intercept bigger than 1, there is a second one associated
with C' = +1 three-gluon exchanges and having an intercept precisely located at 1. It is
tempting to speculate that, after unitarisation is performed in the gluon sector, the BFKL
pomeron would finally lead to a universal Heisenberg-type pomeron, exclusively connected
with the gluon sector.

Furthermore, the degeneracy of the lower trajectories is respected to a very good ap-

proximation, and the model seems extendible to deep inelastic scattering [37|. This model
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also respect unitarity by construction.

One must note that in some processes, the falling In?(s/so) term from the triple pole
at s < sq is important in restoring the degeneracy of the lower trajectories at low energy.
Hence the squared logarithm manifests itself not only at very high energies, but also at
energies below its zero.

Hence we feel that this solution is the one that currently meets all phenomenological

and theoretical requirements.

Model RRP,;1.2, RRL,; RRE,;
x2/dof 0.97 0.97 1.12
CL|%] 67.98 73.37 2.08
Parameter | Mean | Uncertainty || Param. Mean Uncert. || Param. Mean Uncert.
50 34.0 5.4 A -30.3 3.6 g 1.0959 | 0.0021
o 0.533 0.015 o 0.7912 | 0.0080 o 0.6354 | 0.0095
s 0.4602 0.0064 o 0.4555 | 0.0063 s 0.4420 | 0.0099
zep 35.83 0.40 B 6.71 0.22 Xp 18.45 0.41
VAL 21.23 0.33 Arp 0.6833 | 0.0045 X 11.74 0.24
ZKp 18.23 0.30 AKp 0.6429 | 0.0073 | XK» 10.45 0.19
A 35.6 1.4 Asp 1.059 0.056 X>p 18.44 1.1
VAL 29.4 3.0 Ayp 0.00356 | 0.000048 || X7 0.0592 | 0.0012
Akl 20.4 5.0 Ay | 9371076 | 521077 || X7 | 0.0001619 | 9.7 10~
e 42.1 1.3 ypP 105.8 2.9 YPP 66.1 1.2
YPP 32.19 0.94 YP 33.36 0.96 YP 35.3 1.6
i 17.8 1.1 i 60.9 2.4 N 29.40 0.37
N 5.72 0.16 v,P 5.79 0.16 VP 6.04 0.26
v, <P 5.72 1.40 v<P 49.3 2.5 v,P 16.43 0.33
vP 13.13 0.38 V<P 13.42 0.38 v, P 14.07 0.62
vP -250. 130. voP 82.4 6.4 vP -6. 35.
Y, P -320. 150. Y, P 10. 22. Y,P 72. 67.
vyP 0.0339 0.0079 v,'? 0.292 0.013 vy'? 0.1187 | 0.0047
vy 0.00028 |  0.00015 YY" | 0.000814 | 0.000040 | Y7 0.00036 | 0.00010
b 0.00371 |  0.00035
B 0.3152 0.0095

Table 8: parameters of three representative models, defined as in Eq. (1), for 4/s > 5 GéeV.
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6.2 Future prospects

One problem remaining in the analysis of the forward data is the difficulty in adequately
fitting the data for the p parameter in pp and in 77 p reactions. The extraction of the p
data from the measurements of the differential cross sections data at small ¢ is a delicate
problem. A re-analysis of these data may be needed, but it will call for simultaneous
fits to the total cross section data and to the elastic differential cross sections in the
Coulomb-nuclear interference region and in the diffractive cones, hence an extension of the
parametrisation considered here to the non-forward region. One could also consider a class
of analytic models not incorporated in our fits and ranking procedures, class in which the
rising terms would turn on at some dynamical threshold s; (demanding the use of exact
dispersion relations), or add lower trajectories to the existing models. Both approaches
would lead to many extra parameters, and will be the subject of a future study.

On the other hand, the inclusion of other data may very well allow one to decide finally
amongst the various possibilities. One can go to deep-inelastic data, but the problem here
is that the photon occupies a special position in Regge theory, and hence the singularities
of DIS amplitudes do not need to be the same as those of hadronic amplitudes. One can
also extend the models to non-forward data and off-diagonal amplitude such as those of
diffractive scattering. Such steps will involve new parameters associated mainly with form
factors, but there are many data, hence there is the hope that this kind of systematic
study may be generalized, and that in the future we may decide on the nature of Regge
singularities.

Finally, it is our intention to develop the ranking scheme further, probably along the
lines of [38], and to fine-tune the definition of indicators, in order that a periodic cross

assessments of data and models be available to the community [39].
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Appendix 1. Fits to total cross sections only

In this appendix, we present the results for fits to total cross sections for 33 models, which
are variations on the parametrisations referred to in the main text, following the convention
explained after Eq. 1. Table A1.1 gives our results for the ranking of the models, according
to Eq. 10. Table A1.2 gives the values of the quality indicators associated with each model.
Table A1.3 shows the values of the x2/dof as a function of energy. The value with a —
exponent indicates that the model has a negative pomeron contribution in the low-energy
region of the fit. The models marked with * indicates that the extrapolation of the Xp

cross sections overshoot the pp or go below 7 + p, or that C' = 41 residues are negative.
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Model Code Pyv | Pom | Poy | Pym | Ppv | Ppu | Pgy | Rank PV
RRI.2%¢(17) 54| 50| 18| 56| 30| 50| 40 298
(RR)¢ PL2,(17) 46 | 58| 46| 58| 30| 24| 34 296
(RR.)? PL2,(15) 30| 42| 54| 54| 46| 22| 46 294
[RI1.29°|R(12) 14| 44| 14| 50| 52| 46| 58 278
RRIL2(18) 52| 54| 16| 44| 18| 38| 44 266
(RR)¢ P 1.2,(16) 28 | 52| 22| 46| 38| 36| 42 264
(RR.)? P% L2,(14) 18| 26| 30| 40| 55| 34| 52 255
RRE%(17) 50 | 36 8| 48| 30| 50| 30 252
RR. L(15) 24 | 32| 34| 32| 46 5| 54 227
RR, E?%(15) 22| 38| 10| 52| 20| 57| 22 221
RR.PL(19) 4| 56| 56| 42 4 0| 56 218
[R4¢ L] R(14) 12| 48| 24| 36| 55| 10| 28 213
RRL,;(19)* 57| 28| 36| 10| 35| 14| 32 212
RRL?(17) 57 8| 32| 26| 50| 16| 20 209
RRE,;(19) 48 | 40| 12| 30| 10| 30| 38 208
RR, 1.27¢(15) 32 0| 20 4| 46| 57| 48 207
RRL2,;(19) 44 | 34 6| 20| 10| 54| 26 194
(RR)4P, L2(20)* 42 4| 58| 16| 24| 32| 18 194
RRPE,(19) 26 | 46| 44| 28| 10| 27| 12 193
RRPL2,(19)* 36| 14| 42| 14| 35| 41 8 190
(RR)? P,,rL2,(19) 40 2| 48| 22| 24| 27| 24 187
RRP,;L2,(21) 38| 24| 51 6| 15| 44 4 182
[R7¢ L% R(12) 16| 16| 26 8| 58 5| 50 179
(RR)? {PL2},,;(18) 20 18 4| 38 6| 50| 36 172
RRPL(21)* 8| 20| 51| 34| 15| 18| 16 162
RRL(18) 34| 10| 28| 18| 41 8| 14 153
(RR)¢ PL(19) 0 12 0 0 0| 41 1 54
(RR)? PrsL, (18) 2| 22 2 2 21 20 1 51

Table A1.1: ranking of the 28 models having nonzero area of applicability
amongst the 33 in this paper, following Eq. (10), when only total cross sections
are fitted to.
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Quality indicators

Model Code AM cM | cM | UM | RM | RY | SM
RRL,f(19)* 2.60148 | 75.54 | 94.64 | 35.50 | 29.05 | 0.789 | 0.156
RRLY¢(17) 2.60148 | 59.26 | 94.09 | 49.68 | 32.28 | 0.794 | 0.099
RRL29¢(17) 2.58120 | 97.36 | 87.91 | 131.7 | 28.17 | 0.941 | 0.184
RRL2(18) 2.58067 | 97.52 | 87.00 | 85.08 | 26.68 | 0.902 | 0.198
RR E(17) 2.56576 | 86.15 | 79.29 | 88.38 | 28.17 | 0.941 | 0.146
RR E,f(19) 2.56568 | 91.45 | 80.78 | 51.16 | 25.35 | 0.883 | 0.177
(RR)¢ PL2,(17) 2.55303 | 99.78 | 99.67 | 184.6 | 28.17 | 0.875 | 0.161
RRL2,(19) 2.54792 | 81.62 | 77.64 | 41.85 | 25.35 | 0.942 | 0.143

(RR)¢ P,,;L2(20)* | 2.53820 | 58.94 | 99.88 | 37.60 | 27.67 | 0.884 | 0.098
(RR) P,,;12,(19) | 2.53154 | 54.71 | 99.72 | 44.31 | 27.67 | 0.877 | 0.114

RRP,,;L2,(21) 2.52375 | 67.76 | 99.73 | 34.40 | 26.41 | 0.910 | 0.008
RRPL2,(19)" 2.52351 | 62.59 | 99.65 | 37.14 | 29.05 | 0.906 | 0.018
RRL(18) 2.52103 | 59.95 | 93.52 | 39.85 | 30.58 | 0.693 | 0.068
RR. L2%¢(15) 2.50642 | 54.11 | 88.31 | 26.54 | 31.69 | 0.952 | 0.2539

(RR.)¢ P 1.2,(15) | 2.47739 | 94.20 | 99.75 | 97.71 | 31.69 | 0.838 | 0.220
(RR)4 P4 1.2,(16) | 2.46789 | 97.49 | 92.53 | 87.39 | 29.82 | 0.900 | 0.197

RRPE,(19) 2.44915 | 95.83 | 99.66 | 49.82 | 25.35 | 0.877 | 0.057
RR. L¥(15) 2.42625 | 78.91 | 94.41 | 51.99 | 31.69 | 0.667 | 0.331
RR. E%(15) 2.39977 | 89.51 | 79.88 | 95.81 | 27.13 | 0.952 | 0.104

(RR)4{PL2},,;(18) | 2.39430 | 64.63 | 72.14 | 70.24 | 22.84 | 0.941 | 0.164
(RR,)¢ P9 1.2,(14) | 2.38295 | 75.32 | 93.62 | 74.78 | 33.80 | 0.890 | 0.310

[R% L% R 2.37016 | 63.32 | 92.89 | 34.57 | 39.00 | 0.667 | 0.289
[RY 1.29¢] R, (12) 2.36985 | 94.28 | 83.36 | 91.56 | 33.38 | 0.924 | 0.491
[RY¢ L9 R(14) 2.36207 | 96.86 | 92.55 | 59.94 | 33.80 | 0.736 | 0.145
RRPL(21)* 2.18238 | 64.98 | 99.73 | 58.88 | 26.41 | 0.810 | 0.082
RR.PL(19) 1.93416 | 99.20 | 99.84 | 78.20 | 21.70 | 0.561 | 0.372
(RR)? P,sL,(18) | 1.62709 | 65.46 | 65.46 | 14.98 | 12.11 | 0.810 | 0.000
(RR)¢ PL(19) 1.40760 | 62.17 | 62.17 | 14.83 | 11.50 | 0.906 | 0.000

Table A1.2: quality indicators of the the 28 models having nonzero area of
applicability amongst the 33 models considered in this paper, following Egs.

(2-7) when only total cross sections are fitted to.
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x%/dof vs. \/Smin in GeV

ModelCode(Npq,) 3 4 5 6 7 8 9 10

RRE,;(19) 138 | 115 | 091 | 0.87 | 0.89 | 0.90 | 0.93 | 0.91
RRE?(17) 139 | 117 | 093 | 0.89 | 0.90 | 0.91 | 0.93 | 0.92
RR. E%(15) 2.37 | 147 | 1.05 | 091 | 0.90 | 091 | 0.93 | 0.91
RRL,(19)* 1.31 | 0.96~ | 0.82 | 0.80 | 0.85 | 0.85 | 0.86 | 0.85
RRL(18) 1.33| 0.98 | 0.85 | 0.83 | 0.87 | 0.87 | 0.87 | 0.86
RRL?(17) 1.33/0.99~ | 0.85 | 0.83 | 0.87 | 0.87 | 0.87 | 0.85
RR. L%(15) 220 | 1.22 | 095 | 0.84 | 0.86 | 0.86 | 0.87 | 0.85
[R¢ L% R(14) 144 | 1.03 | 088" | 0.85 | 0.89 | 0.87 | 0.88 | 0.87
[R% L% R.(12) 2.20| 122 (095~ | 0.84 | 0.86 | 0.86 | 0.87 | 0.85
RRL2,,;(19) 145| 119 | 094 | 0.90 | 0.91 | 091 | 0.94 | 0.92
RRL2(18) 1.33 | 1.05 | 0.88 | 0.85 | 0.91 | 0.89 | 0.90 | 0.89
RRL2%¢(17) 1.33 | 1.06 | 0.88 | 0.85 | 0.88 | 0.88 | 0.90 | 0.89
RR. L2%¢(15) 228 | 1.33 | 0.99 | 0.87 | 0.87 | 0.88 | 0.90 | 0.89
[R% L29] R.(12) |2.39| 1.38 | 1.03 | 0.89 | 0.90 | 0.89 | 0.91 | 0.91
(RR)¢ L(15) 2.63 | 202 | 1.37 | 127 | 1.22 | 121 | 1.25 | 1.08
(RR)¢ PL(19) 2.34 | 1.84 | 134 | 124 | 1.21 | 121 | 1.22 | 0.97
(RR)? P E,(16) |144 | 1.16 | 1.02 | 1.01 | 1.06 | 1.06 | 1.05 | 1.04
(RR)4{PL2},,7(18) | 1.91 | 1.56 | 1.06 | 0.97 | 0.95 | 0.95 | 0.99 | 0.94
RRPL(21)* 1.33 1 0.98~ | 0.85~ | 0.83~ | 0.87 | 0.88 | 0.84 | 0.74
RR.PL(19) 1.33 | 0.98~ | 0.85~ | 0.83~ | 0.87 | 0.87 | 0.84 | 0.74
RRPL, ,,;(20)~ 2.24 | 142 | 1.14 | 1.03 |0.97" | 091~ | 0.84™ | 0.74
RRPL,(18)~ 224 | 143 | 1.16 | 1.05 [ 0.99” [ 0.93~ | 0.85~ | 0.76~
(RR)? P,L (18) | 266 | 210 | 1.73 | 1.58 | 143 | 1.37 | 125 | 0.96
(RR)? P% L,(15) | 274 | 2.27 | 2.06 | 2.06 | 2.12 | 215 | 2.19 | 2.38
(RR)¢ P,,; L2(20)* | 1.24 | 0.99 | 0.82 | 0.79 | 0.83 | 0.84 | 0.83 | 0.73
RRPL2,(21) 126 | 097 | 0.81 | 0.79 | 0.82 | 0.83 | 0.82 | 0.75
RRPL2,(19)* 127 | 098 | 0.82 | 0.80 | 0.84 | 0.84 | 0.83 | 0.76
(RR)¢ P,y 12,(19) | 1.27| 0.99 | 0.82 | 0.80 | 0.83 | 0.83 | 0.82 | 0.75
(RR)* P L.2,(17) |1.28| 1.00 | 0.82 | 0.81 | 0.83 | 0.83 | 0.83 | 0.76
(RR)4 P9 1.2,(16) | 1.30 | 1.04 | 0.88 | 0.87 | 0.91 | 0.91 | 0.90 | 0.86
(RR.)? P 12,(15) |2.08| 1.19 | 0.90 | 0.82 | 0.83 | 0.83 | 0.82 | 0.75
(RR.)? P% 1.2,(14) | 2.11 | 1.22 | 0.96 | 0.88 | 0.90 | 0.90 | 0.89 | 0.86
RRPE,(19) 1.36 | 1.04 | 0.89 | 0.86 | 0.87 | 0.86 | 0.83 | 0.76

Table A1.3: x?/dof as a function of the minimum energy of the fit for the 33

models considered in this paper when only total cross sections are fitted to.
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Appendix 2. Fits to total cross sections and to the p parameter.

In this appendix, we present the results for fits to total cross sections and the p parameter
for 33 models, which are variations on the parametrisations referred to in the main text,
following the convention explained after Eq. 1. Only 21 of these passed through qualifica-
tion tests in this case. The tables are presented as in Appendix 1. It should be noted that
for model RRPL2,(19) with highest rank, corresponding to model RRP,,L.2,,(21) with the
extra imposition of factorization on the P,; residues, tends to choose a negative value for
the reggeon C' = +1 residue in 7y cross sections. Although this does not exclude it as the
residue has large errors, we have preferred to present in this paper the details of the next

best ranking parametrisation.
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Model Code Puu | Pow | Pow | Py | P | Pry | Pwr | Pow | Rank PM
RRPL2,(19)" 42 26| 42| 42| 34| 28| 12| 4 230
RRP,,;12,(21) 44| 36| 44| 40| 15| 31| 10| 2 222
RRL,(19)* 30| 42| 26| 24| 34| 18| 18| 30 222
(RR)¢ PL2,(15) 34| 20| 36| 20| 28| 24| 28| 14 204
(RR)? Po;L2,(19) | 40| 8| 40| 22| 34| 22| 16| 12 194
[R% L%R,(12) 14| 32| 18| 10| 42| 6| 24| 38 184
(RR.)4P%L2,(14) | 20| 16| 10| 36| 19| 36| 22| 22 181
(RR)4P12,(16) 18| 14 38 38| 30| 26 180
RR, L2¢(15) 6| 30 4 44| 44| 40 180
(RR)? P,;L2(20)* | 38 28| 32| 25| 31| 14| 8 178
(RR) PL2,(17) 36| 0| 34| 18| 30| 26| 20| 10 174
RRPL(21)* 2| 34| 32| 44| 15| 16| 6| 24 173
RR, L%(15) 24| 38| 24 10| 4| 32| 32 172
RRL2%(17) 10| 28 2| 42| 40| 42 170
[R% L29|R,(12) 12 18] 0 22| 40| 38| 34 170
RRL(17) 28| 6| 20| 30| 44| 12| 4| 18 162
RRPE, (19) 22| 44| 12| 16| 4| 20| 34| 6 158
[RELY|R(14) 16| 24| 14| 12| 19| 14| 36| 20 155
RRI2(18) 8| 22| 2| 0| 0| 34| 42| 44 152
RR,PL(19) 4] 12| 38| 14| 12 26| 36 142
RRL(18) 26| 10| 16| 26| 39 8| 0 133

Table A2.1: ranking of the the 21 models having nonzero area of applicability

amongst the 33 models considered in this paper, following Eq. (10) when cross

sections and p parameters are fitted to.
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Quality indicators

Model Code AM cM | cM | uM | RM | RV | SM | SM
RRP,,;L2,(21) 2.20661 | 67.98 | 84.74 | 22.88 | 29.45 | 0.900 | 0.224 | 0.101
RRPL2,(19)" 2.20619 | 63.46 | 84.13 | 24.14 | 32.40 | 0.895 | 0.226 | 0.190

(RR)? P,,;12,(19) | 2.18781 | 53.15 | 83.81 | 16.49 | 32.40 | 0.871 | 0.286 | 0.690

(RR)¢ P,,;L2(20)* | 2.18530 | 50.41 | 81.74 | 18.21 | 30.86 | 0.900 | 0.265 | 0.407

(RR)¢ PL2,(17) 1.99653 | 50.35 | 83.04 | 15.64 | 31.61 | 0.882 | 0.296 | 0.673

(RR.)? PL2,(15) | 1.88491 | 61.92 | 83.38 | 16.26 | 31.13 | 0.876 | 0.467 | 0.795

RRL,f(19)* 1.82464 | 73.37 | 81.09 | 16.63 | 32.40 | 0.784 | 0.289 | 1.302
RRL(17) 1.82281 | 52.97 | 78.17 | 17.56 | 36.00 | 0.743 | 0.198 | 1.080
RRL(18) 1.82274 | 53.59 | 77.18 | 16.73 | 34.11 | 0.686 | 0.217 | 0.001
RR. L9(15) 1.82270 | 68.31 | 79.68 | 12.48 | 28.31 | 0.667 | 0.525 | 1.311
RRPE,(19) 1.81878 | 73.98 | 73.74 | 15.46 | 22.65 | 0.830 | 0.526 | 0.282

RR,)4P12,(14) | 1.79558 | 60.29 | 67.08 | 19.94 | 30.20 | 0.912 | 0.429 | 1.100

(
(RR)4P?L2,(16) | 1.79315 | 58.40 | 66.41 | 19.98 | 26.65 | 0.917 | 0.470 | 1.241

RI°LI|R(14) 1.73409 | 63.29 | 76.41 | 13.09 | 30.20 | 0.747 | 0.533 | 1.082

[
[R% LIIR,(12) 1.73264 | 65.79 | 78.13 | 13.03 | 34.85 | 0.682 | 0.440 | 1.935
[RY 1.29¢] R.(12) | 1.72644 | 61.50 | 61.50 | 11.58 | 30.54 | 0.939 | 1.159 | 1.692

RRL2%¢(17) 1.72618 | 64.20 | 64.20 | 11.23 | 22.06 | 0.941 | 1.318 | 2.503
RRL2(18) 1.72607 | 63.04 | 63.04 | 11.19 | 20.89 | 0.902 | 1.395 | 2.657
RR. L2%¢(15) 1.72369 | 65.63 | 65.63 | 11.27 | 24.81 | 0.952 | 1.447 | 2.104
RR.PL(19) 1.99062 | 55.13 | 83.67 | 15.38 | 28.45 | 0.61 | 0.466 | 1.824
RRPL(21)* 1.60724 | 66.59 | 82.16 | 26.29 | 29.45 | 0.752 | 0.210 | 1.135

Table A2.2: quality indicators of the 21 models having nonzero area of appli-
cability amongst the 33 models considered in this paper, following Eqs. (2-7)

and (11) when cross sections and p parameters are fitted to.
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x%/dof vs. \/Smin in GeV

Model Code(Npq) 3 4 5 6 7 8 9 10
RRE,;(19) 1.83 138 | 1.12 | 1.10 | 1.10 | 1.05 | 1.02 | 1.02
RRE®(17) 1.84 | 1.39 1.13 1.12 1.11 1.06 1.02 1.02
RR. E¥¢(15) 2.47 | 1.58 1.23 1.13 1.10 1.05 1.02 1.02
RRLnf(19)* 1.61 | 1.10 | 0.97~ | 0.97 1.00 0.96 0.94 0.93
RRL(18) 1.63 | 1.13 | 0.99 | 0.99 1.02 0.97 0.95 0.94
RRLI(17) 1.63 | 1.13 | 1.00~ | 0.99~ | 1.02 | 0.97 | 0.94 | 0.94
RR,. L9(15) 220130 | 1.08 | 1.01 | 1.02 | 0.97 | 0.94 | 0.94
[RY¢ L] R(14) 1.70 | 1.16 | 1.02 | 1.01 | 1.03 | 098 | 0.95 | 0.94
[R?€ LI R.(12) 2.20 | 1.30 1.08 1.01 1.02 | 097 | 0.94 0.94
RRL2nf(19) 1.83 | 1.34 1.11 1.10 1.11 1.06 1.01 1.00
RRL2(18) 1.68 | 122 | 1.04 | 1.04 | 1.06 | 1.01 | 0.97 | 0.97
RRL27¢(17) 1.68 | 122 | 1.04 | 1.04 | 1.05 | 101 | 0.97 | 0.97
RR, L27¢(15) 230 | 1.41 | 113 | 1.06 | 1.05 | 1.00 | 0.97 | 0.97
[R% 129 R.(12) | 238|144 | 1.16 | 1.07 | 1.07 | 1.01 | 0.98 | 0.98
(RR)¢ LI(15) 3.76 | 2.61 | 1.87 | 1.82 | 1.73 | 1.70 | 172 | 1.72
(RR)? PL(19) 345|237 | 181 | 1.76 | 171 | 1.69 | 173 | 1.72
(RR)¢ P E,(16) | 2.35|1.53 | 1.24 | 1.23 | 1.21 1.17 | 117 | 117
(RR)%{PL2},7(18) |2.81|1.98 | 1.40 | 1.34 | 1.27 | 1.20 | 1.13 | 1.12
RRPL(21)* 1.63 | 1.11 | 0.98~ | 0.98~ | 0.99~ | 0.94~ | 0.93~ | 0.91
RR.PL(19) 1.63 | 1.11 | 0.98 | 0.98 | 0.99 | 0.94 | 0.93 | 0.91
RRPLu,nf(20)_ 2.43 | 1.49 1.25 1.16 1.08 1.00~ | 0.97 | 0.92™
RRPL, (18)~ 243|150 | 127 | 1.17 | 1.10 | 1.01 | 0.98~ | 0.93~

(RR)* PfL, (18) 359250 | 210 | 1.95 | 1.91 | 1.88 | 1.89 | 1.87

(RR)? P9 L,(15) | 3.67 | 264 | 232 | 227 | 232 | 232 | 239 | 251

(RR)¢ P,.; 12(20)* | 1.92 | 1.23 | 1.00 | 1.00 | 0.99 | 0.94 | 0.93 | 0.92

RRP,,;L2,(21) 175|114 | 097 | 097 | 0.97 | 0.92 | 0.93 | 0.92

RRPL2,(19)* 1.75|115| 098 | 098 | 0.97 | 0.93 | 0.93 | 0.92

RR)4 PnyL2,(19) | 1.96 | 1.26 | 0.99 | 0.99 0.98 093 | 093 | 093

RR)? PL2,(17) 196 |1.27| 1.00 | 1.00 | 0.98 | 0.94 | 0.93 | 0.93

RR.)? PL2,(15) |238|137| 1.06 | 1.01 | 0.98 | 0.93 | 0.93 | 0.93

(
(
(RR)? P?° 1.2,(16) | 1.98 | 1.29 | 1.04 | 1.04 | 1.03 | 0.98 | 0.97 | 0.97
(
(

RR.)? P9 L2,(14) | 2.40 | 1.39 | 1.10 | 1.05 | 1.03 | 0.98 | 0.97 | 0.97

RRPE,(19) 1.88 | 1.22 | 1.06 1.03 1.01 096 | 0.95 | 0.93

Table A2.3: x2?/dof as a function of the minimum energy of the fit for the 33
models considered in this paper when cross sections and p parameters are fitted

to.

32




Appendix 3. Formulse

We give here the formulae used in this paper. The imaginary part of the amplitude, which

we take as s time the total cross section, is parametrized as the sum of several terms, I,,,

with (see Eq. (1)):

I+

pole

I-

pole

I

Iy

All terms have charge conjugation C' = +1, except I

C(s/51)*
FCO~(s/s1)*
Cy, sln(s/s1)
Cra s1n’(s/sg)

pole

which has C = —1. We can obtain

the corresponding additive real parts through s to u crossing symmetry and analyticity:

R+

pole

Rpole

Ry,
Ry

T
—I,. cot [5 oy
B T
Ipole tan [5 a]
T
—sC
g ° T

m s In(s/so) Cra
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